Effects of Lumbar Extensor Progressive Resistance Exercise Versus Core Stabilization Exercise on Low Back Strength and Endurance in Soldiers: Preliminary Results of a Randomized Clinical Trial

John Mayer, DC, PhD
Lt Col John D. Childs PT, PhD, MBA (USAF)
MAJ Shane Kopenhagen, PT, PhD (USA)
CPT Will Pitt, PT, DPT (USA)
Brett D. Nelson, PT DPT (Study Coordinator)
William S. Quillen, PT, PhD, FACSM (USN-ret)

“Promoting Readiness Through Research”

Acknowledgements

- **Funding**
 - DoD FY10 Congressional Special Interest Musculoskeletal Interdisciplinary Research Initiative (W81XWH-11-2-0179)
- **IRB Approval** - Brooke Army Medical Center
 - Oct 2011 (C.2011.154d)
- **Registration**:
 - http://clinicaltrials.gov

Background

- The lifetime prevalence of low back pain is up to 80%.¹
- The recurrence rate of individuals with first-time low back pain is high (40-60%).²³
- 10% low back injuries are not resolved within 6 months and account for 80% of all costs related to low back injuries.⁴

Objective

- **Specific Aim**: Assess the effectiveness of a progressive resistance exercise training program to improve lumbar extensor muscle strength and endurance in US Army Soldiers in training to become combat medics.
- **Hypothesis**: A high intensity progressive resistance exercise (HIPRE) for the lumbar extensors will result in a 25% increase in lumbar extensor muscular strength and endurance compared to core stabilization training following the 11-week intervention.

Background

- While many treatment strategies for warfighters with LBP are available, many do not return to the line of duty after onset of LBP.
- LBP is the “Silent Killer” in the military
- Prevention is KEY!
Research Design

- 592 (12 platoons, 3 companies) Army Soldiers from the 232 Medical Battalion
- Fort Sam Houston (AMEDD)
- 2 groups (experimental and control)
- 12 week intervention
- Pre and Post intervention follow-up
- 1 year for recruitment

Inclusion Criteria

- 18-35 years of age
- English Speaking and Reading

Exclusion Criteria

- Diagnoses of condition that would affect their ability to complete interventions
 - Cardiovascular contraindication, orthopedic complaints, systemic inflammatory disease, history of spinal surgery, etc.
- Currently seeking or receiving treatment for LBP
- Currently performing progressive resistance exercise for the lumbar extensors (outside of standard military fitness programs)

Randomization

- Due to military training and living environments individual randomization was unfeasible for risk of treatment contamination.
- Balanced cluster randomization by company was used.
 - Lumbar Extensor HIPRE Training (n=298)
 - Core Stabilization Exercise Training (n=284)

Data Collection

- Baseline and 12 weeks
- Physical performance tests and questionnaires
Baseline Collection
- Subjective and Physical Exam
- Questionnaires
- Height and Weight
- Lumbar Extensor Strength and Endurance Testing
 - Lumbar dynamometer
 - Timed prone plank test
- All participants underwent identical baseline tests prior to randomization

Intervention
- Group 1 (experimental, HIPRE) - High intensity exercise program targeting the lumbar extensor muscles
- Group 2 (Control, CORE) – Core Stability Exercises
 *Interventions are in addition to normal military physical training.

Group 1 (Experimental)
- 1x per week for 11 weeks
- MedX, Welttek Inc, Orlando, FL
- Each session consisted of one set of dynamic, full ROM isolated HIPRE training on dynamometer.
- One warm-up set was completed prior to training set.

Group 2 (Control)
- 1x per week for 11 weeks
- 1 set of 6 repetitions of each exercise within 1 minute with no rest between exercises
- 5 Core Stability Exercises
 - Abdominal drawing-in crunch maneuver
 - Horizontal side support
 - Supine shoulder bridge
 - Quadruped alternating arm and leg
 - Woodchopper
Outcome Measures

- Primary measure evaluated was lumbar extension strength defined as maximum voluntary lumbar extension isometric torque (ft-lb).
- Secondary measures:
 - Dynamic lumbar extension endurance (number of repetitions on dynamometer)
 - Times prone plank test (seconds)
- Outcomes were assessed by raters blinded to group assignment.

Statistical Analysis

- Performed using SAS software, version 9.
- Demographic and baseline variable compared using ANOVA.
- Primary analysis was conducted according to intention to treat principles using a mixed models approach.
- T-tests were performed using exercise compliance as a between group factor (compliance=completion of 11+ sessions)
- Alpha level was a priori set to 0.05 for all analyses.

Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>CORE (n = 284)</th>
<th>HIPRE (n = 298)</th>
<th>TOTAL (n = 582)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous variables:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>21.5 (3.7)</td>
<td>21.8 (3.8)</td>
<td>21.6 (3.6)</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.74 (0.09)</td>
<td>1.75 (0.17)</td>
<td>1.75 (0.19)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>75.4 (11.3)</td>
<td>76.0 (11.5)</td>
<td>75.7 (11.4)</td>
</tr>
<tr>
<td>Categorical variables:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (F/M)</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>History Low Back Pain (Y/N)</td>
<td>24.3</td>
<td>22.3</td>
<td>23.4</td>
</tr>
</tbody>
</table>

Results - Lumbar Extension Strength

All participants:

- At follow up, adjusted (by baseline) lumbar extension strength was 9.7% greater in HIPRE compared to Core (HIPRE: 310.2 ± 6.1 Nm; Core: 282.7 ± 6.1 Nm, respectively, p = 0.001)
- Significant improvements in lumbar extension strength were observed in both groups (HIPRE 13.3%, Core 3.3%, p < 0.05)

Compliant participants:

- At follow up, lumbar exercise strength HIPRE was 11.9% greater in HIPRE compared to Core (HIPRE 313.9 ± 99 Nm; Core 280.4 ± 92.1 Nm, respectively, p = 0.004)
- Significant improvements in lumbar extension strength were observed in both groups (HIPRE 14.9%, Core 4.4%, p < 0.05)
Results - Lumbar Extension Endurance

All participants:
- At follow-up, adjusted (by baseline) lumbar extension endurance was 12.3% greater in HIPRE compared to Core (HIPRE 24.6 ± 1.0 repetitions, Core 21.9 ± 1.0 repetitions, \(p = 0.001 \))
- Significant improvements in lumbar extension endurance were observed in HIPRE (11.4%, \(p < 0.001 \)), but not Core (\(p > 0.05 \)).

Results - Prone Plank

All participants:
- At follow-up, no significant between group differences or within group improvements were observed.

Discussion

- HIPRE training results in significantly greater improvement in lumbar extension isometric strength and dynamic endurance compared to core stabilization exercise
- Previous research (Mayer 2002) among civilians had:
 - Nearly identical baseline values
 - 16% improvement was observed in the Mayer study which is similar to the 15% improvement observed in the current study

Discussion

- Ceiling effect may have limited magnitude of improvement (10% instead of hypothesized 25%) due to high baseline endurance/strength
- Unlikely a ceiling effect occurred near the ranges of strength we observed
 - In a previous study (Pollock, 1989), the average pre-training/post-training strength values were 223 and 337 ft-lb, respectively
 - Among compliant Soldiers in our HIPRE group, the average pre-training/post-training strength values were 202 and 232 ft-lb, respectively
- Likely a ceiling effect occurred with the timed prone plank test
 - Consistent with previous literature regarding core muscular endurance in (Mayer, 2013 and George, 2011)

Future Research

- Explore strategies for improving compliance
- Test hypothesis in injury prevention RCT of lumbar extensor HIPRE training to reduce the incidence/severity of low back injury during peacetime and theater of operations
- Explore benefits of HIPRE training in other highly active civilian populations as well (e.g., police, firefighters)
- Test whether effects of lumbar extensor HIPRE training are further enhanced in the most highly actively occupations within the military (i.e. special ops forces)

Conclusion

- Results suggest HIPRE training results in significant improvement in lumbar extension isometric strength and endurance compared to core stabilization exercise
- While the observed lumbar extensor strength and endurance gains were statistically significant, the clinical relevance of these gains is unclear
- Need for future research
Questions

References

Army-Baylor DPT Involvement

- Assist with study related procedures including but not limited to screening and intervention procedures, data collection and management, and other study related duties.
- Assist in carrying out fitness tests as part of baseline and 12 week measurements.
- Assist in delivering interventions to both study groups.